REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 | 71 111 11 | 1 1 2 2 11 1 | | | | | | | | |--|----------------------------|------------------|------------|------|---------------|--|---|--| | The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. | | | | | | | | | | 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) | | | | | | | | | | | 04-03-2014 Journal Article | | | | | | 3. DATES COVERED (FIGHT - 10) | | | 4. TITLE AND | SUBTITLE | | | | | 5a. COI | NTRACT NUMBER | | | Microbiologically Influences Corrosion of Pilings | | | | | | | | | | | | | | | | 5b. GRANT NUMBER | | | | | | | | | | 50. GRANT NUMBER | 5c. PROGRAM ELEMENT NUMBER | | | | | | | | | | 0601153N | | | | 6. AUTHOR(S) | | | | | | 5d. PROJECT NUMBER | | | | Brenda J. Little and Richard I. Ray | | | | | | San Thousan Nomber | | | | · | | | | | | | | | | 5 | | | | | | 5e. TAS | 5e. TASK NUMBER | | | | | | | | | | | | | | | | | | | 5f. WORK UNIT NUMBER | | | | | | | | | | | 73-4635-03-5 | | | 7 DEDECIDATE | IC OPCANIZATI | LOSI NIABATICA A | ID ADDDESC | VEC) | | L | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | | | | | | 8. PERFORMING ORGANIZATION REPORT NUMBER | | | | Naval Research Laboratory Oceanography Division | | | | | | NRL/JA/733013-1810 | | | | Stennis Space Center, MS 39529-5004 | | | | | | | 1112,010,030 13 1010 | | | | | | | | | | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | Office of Naval Research | | | | | | | ONR | | | One Liberty Center | | | | | | | ONK | | | 875 North Randolph Street, Suite 1425 | | | | | | | 11. SPONSOR/MONITOR'S REPORT | | | Arlington, VA 22203-1995 | | | | | | | NUMBER(S) | | | | | | | | | | | | | 12. DISTRIBUTION/AVAILABILITY STATEMENT | | | | | | | | | | Approved for public release, distribution is unlimited. | 13. SUPPLEMENTARY NOTES 20/5/0/3/28 | | | | | | | | | | 1013101 | | | | | | | 28 | | | 14 ADSTDACT | | | | | | | | | | 14. ABSTRACT Sheet piles, used as retaining walls, wharfs, and piers, are typically made of unprotected carbon steel (CS). This type is affordable and the general corrosion rate | | | | | | | | | | (wastage) is predictable. Despite the long and successful use of CS sheet pilings, there are reports of localised corrosion of CS pilings that have been identified as | | | | | | | | | | microbiologically influenced corrosion (MIC) ie, corrosion that is a result of the presence and activities of microorganisms. Microorganisms can produce localised | | | | | | | | | | attack including pitting, enhanced erosion corrosion, enhanced galvanic corrosion, stress corrosion cracking, and hydrogen embrittlement of CS Microorganisms do | | | | | | | | | | not produce a unique corrosion morphology in CS that could not be produced abiotically. | 15. SUBJECT TERMS | | | | | | | | | | microbiologically influenced corrosion, carbon steel pilings, iron-oxidising bacteria | | | | | | | | | | prings, non-straining successive | 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON | | | | | | | ME OF RESPONSIBLE PERSON | | | a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES | | | | | Brenda Little | | | | | Unclassified | Unclassified | Unclassified | UU | J | 3 | 19b. TELI | EPHONE NUMBER (Include area code)
(228) 688-5494 | | # Microbiologically influenced corrosion of pilings Brenda J. Little, senior scientist for marine molecular processes, Richard I. Ray, physical scientist and Jason S. Lee, materials engineer, Naval Research Laboratory, Mississippi, United States Sheet piles, used as retaining walls, wharfs, and piers, are typically made of unprotected carbon steel (CS). This type is affordable and the general corrosion rate (wastage) is predictable. Despite the long and successful use of CS sheet pilings, there are reports of localised corrosion of CS pilings that have been identified as microbiologically influenced corrosion (M1C) ic. corrosion that is a result of the presence and activities of microorganisms. Microorganisms can produce localised attack including pitting, enhanced crosion corrosion, enhanced galvanic corrosion, stress corrosion eracking, and hydrogen embrittlement of CS. Microorganisms do not produce a unique corrosion morphology in CS that could not be produced abiotically. # Corrosion of pilings in marine and estuarine environments Accelerated low water corrosion (ALWC) is a particularly aggressive form of localised corrosion that has become a high profile problem, associated with unusually high corrosion rates of unprotected or inadequately protected CS pilings in marine and estuarine waters. The UK Institution of Civil Engineers described ALWC as "a matter of national importance"." ALWC is a global phenomenon having been reported in all climatic conditions on unprotected steel pilings in contact with saline water (i.e. seawater and brackish water) that is subject to tidal influences. A survey of port and harbour authorities in five Western European countries concluded that at least 13 percent of the ports were affected by ALWC. The term ALWC does not define a corrosion mechanism. Instead the term denotes the precise location of the corrosion on the exposed pilings (see Figure 1). Average corrosion rates in the range of 0.3 to 1.2 millimetres per side per year have been reported. ALWC has a distinct appearance, patches of lightly adherent, bright orange and black (iron sulphide rich) deposits over a clean, shiny and pitted steel surface. As pits deepen and become more numerous, they overlap, producing terraced holes. Corrosion products contain magnetite, iron sulphides, and green rust (an unstable iron oxyhydroxide sulphate complex). #### Mechanisms and mitigation A report by Gehrke and Sand concluded that ALWC was due to the combination of sulphate-reducing bacteria (SRB) and sulphur oxidising bacteria (SOB) in the fouling layers on the pilings. If The organisms co-populate the same spatial regions on the pilings. At low tide the biofouling layer is oxygenated whereas at high tide anaerobic areas develop. Sulphides produced by SRB are converted to sulfuric acid by SOB, creating an extremely corrosive environment. (see Figure 2a). Figure 1: Schematic of ALWC illustrating relationship of water level and degree of corrosion. Taken from Kopczyński (PII 2010). Melehers and Jeffrey found: "The increased occurrence of ALWC reported in recent years is most likely the result of elevated levels of water pollution in the waters to which the steel piling has been exposed over its lifetime, irrespective of whether water pollution is currently decreasing." A later review of data from a 27-year period related to ALWC concluded that the severity of ALWC correlated with the concentration of dissolved inorganic nitrogen (DIN), "a critical nutrient for microbiological (bacterial) activity in seawater." It is suggested that this observation could be used to predict the long-term risk of ALWC.**iii It has also been reported that protective coatings, sacrificial anodes or impressed current cathodic protection were effective in mitigating ALWC.**ii # Corrosion of pilings in freshwater environments Accelerated corrosion has been reported for CS pilings in the Duluth-Superior Harbour (DSH), Minnesota, a fresh water estuary.5 DSH pilings that are over 30 years old are either completely or partially perforated by localised corrosion (see Figure 2b). The corrosion extends from the air/water interface to a depth of about 3 metres, but with decreased attack from 1.2 to 3 metres. The position of the air/water interface is not significantly influenced by tides. Below 3 metres where zebra mussel attachment begins there is little corrosion. Corroded DSH pilings have an orange rusty appearance characterised by tubereles, dense mounds of corrosion products (see Figure 3). The average pit depth, a measure of localised corrosion, in a three-year study ranged between 670 micrometres to 788 micrometres, 7-8 percent of the total thickness of the coupons. Pit depth varied with location and increase in pit depth was not linear over the three-year exposure. ## Mechanisms and mitigation A 2009 study has demonstrated that corrosion of earbon steel pilings in DSH was due to deposition of copper under tubercles of iron-oxidising bacteria (1OB). IOB oxidise iron and produce dense deposits of intact and/or partly degraded remains of bacterial cells mixed with amorphous hydrous ferric oxides. A galvanic couple was established between the copper layer and the iron substratum. In laboratory experiments, the galvanic current depended on the concentration of dissolved copper in the lake water.xl A recent study used genetic techniques to quantify the abundance of IOB at multiple sites in the DSH over multiple Photograph arentary of Com-JW Sas Grant Institute Figure 2a; (f. eft) Piling deterioration due to ALWC. Figure 2b: (Right) Corrosion of piling in Duluth Superior Harbour. Figure 3: Tuberde on carbon steel exposed in Duluth Superior Harbour before iletty and after trighty removal of tuberde. years. They demonstrated that tubercles in the DSH were enriched with IOB compared to the biofilm on adjacent surfaces. However, long-term corrosion was not related to IOB abundance or dissolved copper concentration. SH Both studies concluded that a combination of microbiological and chemical factors influenced the rate of corrosion. An additional report evaluated coatings for DSH pilings over a four-year period. Some of the coatings provided an effective barrier that prevented tuberely formation and MIC. Figure 4: Schematic representation of the chemistry and reactions associated with ALWC, Reproduced with permission from NACE International, Houston TX, All rights reserved, Copyright NACE International 2003, # Diagnosing MIC in harbours The involvement of interoorganisms in the corrosion of CS pilings cannot be surmised by evaluating the morphology of the localised corrosion. Furthermore quantification of bacterial types does not provide a predictive capability. The following are required for an accurate diagnosis of MIC: a sample of the corrosion product or affected surface that has not been altered by collection or storage, identification of a corrosion mechanism, identification of microorganisms capable of growth and maintenance of the corrosion incchanism in the particular environment, and demonstration of an association of the microorganisms with the observed corrosion. # In summary Corrosion rates for ALWC and corrosion in DSH are similar ic. 0.3 millimetres per-year and higher. However, there are obvious differences in the observations in DSH and reports of ALWC (see Figure 4). ALWC is in the low water zone, just below the tidal zone, in saline waters containing gram per litre quantities of sulphate. DSH is a fresh water harbour with milligram per litre concentrations of sulphate. Corrosion in DSH is localised to the top 3 metres below the surface of the water and water depth is not significantly influenced by tides. Despite these differences both ALWC corrosion and corrosion in DSH have been attributed to MIC. In both eases, a combination of biological, chemical and physical events contribute to the corrosion. The specificity of metal/ microbe/electrolyte interactions makes it difficult to predict the likelihood and rate of MIC in harbours. MIC on CS pilings can be prevented. ### References Little BJ, Lee JS. 2007. Microbiologically Influenced Corrosion. Hoboken, New Jersey: John Wiley and Sons, Inc. "Breakell JE, Foster K, Siegwart M. 2005. Management of Accelerated Low Water Corresion in Steel Maritime Structures C634. London: Construction Industry Research & Information Association (CIRIA) ⁴⁰Johnson D, Moulin JM, Karius R, Resiak B, Confete M, Chao WT. 1994. Low water corrosion on steel piles in marine waters. EUR 17868. Kopczynski B. 2010. Accelerated low-water corrosion in harbours. Pori Technology International 46:116-118 *Cheing CWS, Walsh FC, Campbell SA, Chao WT, Beech IB. 1994. Microbial Contributions to the Marine Corrosion of Steel Piling. Int Biodeter Biodegr. 34(3-4):259-274. ⁴Gehrke T, Sand W. 2003. Interactions between microorganisms and physicochemical factors cause MIC of steel pilings in harbours (ALWC). Paper presented at: CORROSION / 2003, San Diego, CA. "Melchers RE, Jeffrey R. 2010. Corrosion of vertical sicel strips exposed in the marine tidal zone and implications for ALWC. Paper presented at: CORROSION / 2010, San Antonio, TX. ⁴⁰Melchers RE, 2013. Influence of Dissolved Inorganic Nitrogen on Accelerated Low Water Corrosion of Marine Steel Piling. Corrosion, 69(1) SKumar A, Stephenson LD. 2005. Accelerated Low Water Corrosion of Steel Pilings in Seawater. Paper presented at: CORROSION / 2005, Houston, TX. *Marsh CP, Beitelman AD, Buchheit RG, Little BJ. 2005. Freshwater Corrosion in the Duhth-Superior Harbon, Summary of Initial Workshop Findings. ERDC/CERL SR-05-03. May Rl, Lee JS, Little BJ, 2009. Factors contributing to corrosion of steel pilings in Duluth-Superior Harbour Corrosion. 65(11):707-717. Sillicks RE, Oster RJ. 2012. Developing a Risk Assessment Tool to Predict the Risk of Accelerated Corrosion to Port Infrastructure, Finla Report. Great Lakes Marritime Research Institute. ## About the author Brenda J. Little is senior scientist for marine molecular processes at the Naval Research Laboratory. Dr Little has worked in the field of microbiologically influenced corrosion for 30 years. She serves on the editorial board for Biofouling and is a NACE International Fellow. Richard I. Ray is a physical scientist at the Naval Research Laboratory. Mr Ray has worked in the field of microscopy for 20 years and has developed protocols for imagining biofilms and biological materials. Jason S. Lee is a materials engineer at the Naval Research Laboratory, Dr Lee has worked in the field of corrosion for 14 years. # About the organisation Naval Research Laboratory (NRL) is the corporate research laboratory for the US Navy and Marine Corps and conducts a broad program of scientific research, technology and advanced development. NRL has served the navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. NRL publication NRL/ JA/7303 -13-1810. Funding provided by ONR (Dr L. Chriscy). # Enquiries Brenda J. Little Naval Research Laboratory Code 7303, Stennis Space Centre MS 39529, US Tel: +1 (228) 688 4494 Email: brenda.little@nrlsse.navv.mil